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Abstract: The immense growth of the population generates a polluted environment that must be
managed to ensure environmental sustainability, versatility and efficiency in our everyday lives.
Particularly, the municipality is unable to cope with the increase in garbage, and many urban areas
are becoming increasingly difficult to manage. The advancement of technology allows researchers
to transmit data from municipal bins using smart IoT (Internet of Things) devices. These bin data
can contribute to a compelling analysis of waste management instead of depending on the historical
dataset. Thus, this study proposes forecasting models comprising of 1D CNN (Convolutional Neural
Networks) long short-term memory (LSTM), gated recurrent units (GRU) and bidirectional long
short-term memory (Bi-LSTM) for time series prediction of public bins. The execution of the models
is evaluated by Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Coefficient
determination (R2) and Root Mean Squared Error (RMSE). For different numbers of epochs, hidden
layers, dense layers, and different units in hidden layers, the RSME values measured for 1D CNN,
LSTM, GRU and Bi-LSTM models are 1.12, 1.57, 1.69 and 1.54, respectively. The best MAPE value is
1.855, which is found for the LSTM model. Therefore, our findings indicate that LSTM can be used
for bin emptiness or fullness prediction for improved planning and management due to its proven
resilience and increased forecast accuracy.

Keywords: waste prediction; municipal; deep learning; time series; waste management

1. Introduction

Waste management is one of the greatest concerns anywhere in the world [1]. The
random process of the rapid growth of population in urban areas makes the situation a more
dynamic and challenging task for municipalities [2,3]. Therefore, evaluating the variation
and causes of municipal waste generation becomes a challenging task to apply management
strategies [4]. Proper and efficient forecasting is very much critical to generating an efficient
system infrastructure for smart waste management. Moreover, optimized forecasting is
essential to evade the spectacle of inadequacies of waste management and aid policymakers
in generating advanced measures to minimize complications [5]. Many barriers exist to the
implementation of digital waste management systems, including a lack of policymakers’
knowledge as well as the deficiency of standards and strategic rules [6]. Hence, numerous
analysts have greatly contributed to exploring the impact of diverse components on the
waste management era and various models to anticipate waste generation [7,8].

Municipal waste generation is noted to be composite and does not have any direct
relationship between causes and effects concerning multiple aspects [9]. Broadly, two major
tasks accomplished by the waste management system are waste collection and processing.
In this research, we have considered the waste collection process which includes bins,
vacant schedules, routing paths and pick-up locations. Improper waste collection can
cause serious problems for the city and its citizens [10]. For example, overflow of bins can
make the environment dirty and unhealthy, especially in public places, which is hazardous
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to citizens’ health. Therefore, a proper vacant schedule, appropriate bin placement and
uncertainty prediction are huge challenges [11–13].

To overcome the problems and challenges of waste management, researchers are
working from different perspectives such as municipal solid waste, organic waste, industry
or chemical waste, medical waste and of waste recycling [8,14–17]. The architecture and
algorithms of an assortment of deep learning strategies have been compared and evaluated
to execute waste management activities [8]. With the utilization of deep-learning models,
raspberry pi and camera module, a real-time smart waste monitoring system is designed
for the photographic identification and categorization of waste [18]. Combining IoT and
machine learning, Mookkaiah et al. [19] proposed a model that recognizes the category
of waste and classifies them as biodegradable or non-biodegradable to gather them in
individual waste containers. Several studies performed the e-waste classification using
a machine-learning model to collect and remove the waste [20,21]. Fasano et al. [9] have
applied the deep-learning models with permutation methods for dealing with the waste
classification problem. The study determines the factors which are the most influencing
variable, estimating the waste management independent variables and forecasting the
effects from those factors. The studies include the different deep-learning models being
utilized to develop the smart waste management system.

On the other hand, several researchers reported that various models and hybrid tech-
niques have been used to predict municipal waste used for quantity estimation, segregation
and recycling of solid waste [11]. An artificial neural network (ANN) is widely used in a
complex system, which demonstrates its performance in processing nonlinear data [22].
Deep learning is a popular method incorporating advanced technologies including big
data and breakthroughs in training methods [23,24]. The Recurrent Neural Network (RNN)
and Convolution Neural Network (CNN) are typical deep-learning algorithms [5]. CNNs
are broadly used to identify objects from image and image segmentation [25]. RNNs are a
variation of the routine feed-forward artificial neural systems that can employ consecutive
information and be prepared to hold the information around the past. CNNs and RNNs
have been applied to big data processing in different sectors in complex problems such as
waste management.

This paper aims to analyze and forecast future trends in waste generation from the
dataset generated by sensors located in smart bins. This study explores the potential
deep-learning methods applied to the smart bin dataset to predict waste generation. The
key idea behind these deep-learning models is to acquire a trustworthy estimation model
so that the waste management authority can rely on the historical data generated from
the bins. Specifically, the paper attempts to answer the following research questions:
(1) How can deep learning models be used to forecast waste generation for helping decision-
makers in waste-collection operations? and (2) What is the best model to forecast future
waste generation?

2. Related Study

In many digital waste administration perspectives, big data analytics can be used to
incorporate machine learning and artificial intelligence. Gupta et al. [26] surveyed machine-
learning models for garbage collection, sorting and reusing of garbage. Several projects are
being conducted to help the government authorities in using machine learning or other
information analytics procedures to deal with waste administration issues [6].

From an ecological perspective, deep-learning algorithms have been considered by
several researchers to estimate waste generation [27–31]. LSTM, GRU and Bi-LSTM models
are RNN, which are special sorts of artificial neural networks adjusted to work for time
arrangement information or information that includes sequences. To overcome complex
problems, researchers have developed many deep-learning methods including LSTM,
which has been commonly pragmatic in time-series investigation [29]. The LSTM unit uses
the three-gate architecture where it can help to determine whether the impact on municipal
waste generation is transient and what the length of such an impact is in terms of executing
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training. Few studies have applied LSTM neural systems in the time-series investigation
of municipal waste to estimate or resolve their temporal variety [30]. The BiLSTM model
is used for capturing different suitable data from spatial time series data and estimating
the resource consumption in a cloud-based data center [28]. Zhang et al. [31] outlined the
development of a novel dynamic forecasting model based on the GRU with a time series
investigation for displacement prediction. Few types of research used LSTM, GRU and
Bi-LSTM for sequential data analysis such as demand forecasting [32], and many other
diverse fields including waste management prediction.

As summarised in Table 1, several researchers have applied different models for
estimating waste at different periods, for instance, weekly, seasonal or yearly [20,24,25].
Niu et al. [29] have considered two-year data starting from January 2018 to December
2019 to predict the MSW amount in Suzhou, China, using the LSTM model. Considering
the data-driven features, some studies have applied ANN models. Chhay et al. [33]
have contemplated eight socio-economic factors in China from the statistical yearbook
2000–2016 and the outcome attained in terms of MAE, MAPE, RMSE and R2. Abbasi and
El Hanandeh [34] considered the ANN model for an 18-year period of data from Logan
City, Australia. The potentiality of predicting the waste amount in Shanghai China using
deep-learning methods has been quantified using the prediction accuracy measured by
Lin et al. [5], and the result indicates the correlation coefficient of attention, 1D CNN
and LSTM. Vu et al. [35] have considered 36 scenarios with ANN model revealed the
changes in travel distance compared to the non-modified composition. Moreover, this
study found that dual-compartment trucks save travel distance, slightly reducing emissions
but increasing the collection time compared to single-compartment trucks. Due to waste
sorting, collection, scheduling and disposal procedures, more measures are still required to
enhance the performance and efficiency of waste management systems.

Table 1. Application of deep–learning models in waste generation prediction.

Application Region Dataset Findings References

Waste generation
using ANN

Logan City,
Australia

Waste generation (July
1996 to June 2014)

18-year period historical dataset
did not use the smart bin data Abbasi and El Hanandeh [34]

Predicting waste
amount using LSTM Suzhou, China 730 data (January 2018 to

December 2019)

Time series dataset from a
historical record for five different
districts. The data is as a whole
amount the waste for a district

on a particular day.

Niu et al. [29]

Predicting waste
amount using

Attention, 1D CNN,
LSTM and 1D CLA

Shanghai, China January 1990 to December
2018

Considered 24 socioeconomic
factors and the historical dataset

did not use the smart bin data
Lin et al. [5]

Forecasting waste
generation ANN,
Linear regression

Shanghai, China Date from 2000 to 2016

Contemplated eight
socio-economic-factors with the
historical dataset not using the

smart bin data

Chhay et al. [33]

Predicting waste
generation

Melbourne,
Australia Date from 2010 to 2020

Multiple socioeconomic factors
data are available for conducting

further research including the
smart bin

Watson and Ryan [12,13]

ANN Austin, USA Weekly collected garbage
(2004–2018)

Predicting the garbage
generation using weekly amount

of collected garbage
Vu et al. [35]

Waste administration mainly depends on the waste data produced from different
bins placed in various places. Hence, the challenge from the managerial perspective is to
have the proper vacant schedules, appropriate bin placement and uncertainty prediction.
Thus, this paper focuses on four models such as 1D CNN, LSTM, GRU and Bi-LSTM for
estimating future waste generation.
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3. Materials and Methods

To achieve the target of this study, we trained these four models (1D CNN, LSTM, GRU
and Bi-LSTM) to forecast the waste generation from public bin data produced by sensors. To
evaluate the performance of the models, MAE, MAPE, R2 and RMSE performance indices
have been measured. Then, considering the advantages and disadvantages in evaluating
the performance and comparing between the models, five phases were accomplished by:
(1) collecting the data generated from the public bins, (2) investigating and envisioning the
data, (3) training the four categories of deep-learning models, (4) testing the models, and
(5) mining and comparing the outcomes. Figure 1 shows the methodology of this study
and illustrates the process starting from data collection to the performance evaluation of
the models.
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Figure 1. Methodology to deal with the data processing and selecting models.

3.1. Deep Learning Models

For different applications in various sectors, the deep-learning procedures have shown
the significant contributions of development reside in the literature. This section describes
the basic principle of four deep learning models that will be used for waste generation
prediction using smart bin data, namely 1D CNN, LSTM, GRU and Bi-LSTM.

3.1.1. LSTM Model

Due to the gradient difficulties in deep neural or recurrent networks, the LSTM
architecture was introduced by Hochreiter and Schmidhuber to overcome the problems in
training long-term dependencies [36,37]. The LSTM design comprises a set of repetitively
associated sub-networks denoted as memory blocks. The thought behind the memory
block is to preserve its state over time and control the data stream through non-linear gating
units. Figure 2 shows the structure of an LSTM block, which includes the doors, the input
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flag x(t), the yield h(t), the enactment capacities and peephole associations [38]. The input
block and all the gates are recurrently connected with the output block.
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The computing of the LSTM network is the mapping of the input sequence, i.e.,
X = (X1, X2, · · · · · · , Xn) and output sequence, i.e., Y = (Y1, Y2, · · · · · · , Yn). LSTM is
calculated utilizing the following equations:

ft = σ
(

W f · [ht−1, xt] + b f

)
(1)

it = σ
(

W f ·[ht−1, xt] + bi

)
(2)

Ot = σ(W0 · [ht−1, xt] + b0) (3)

Ct = ft ∗ Ct−1 + it ∗ tanh(Wc · [ht−1, xt] + bc) (4)

Ot = σ(W0 · [ht−1, xt] + b0) (5)

ht = ot ∗ tabh(Ct) (6)

In Equations (1)–(3), the activation of the input, output, and forget gates are denoted
by it, ot and ft, respectively. Here, the bias and weight variables symbolized by b f , bi, b0, bc,
W f , W0, Wc and ht−1 signify the prior hidden layer units. After processing Equation (4), Ct
is converted to a current memory cell, which is the activation vector. Moreover, the sigmoid
function is represented in Equation (5) and denoted by σ(◦). Additionally, Equation (6)
shows the hidden layer outputs according to the element-wise multiplication, and adding
nonlinearity on top is utilized by tanh and sigmoid functions, which are demonstrated in
Equations (1)–(6).

3.1.2. GRU Model

GRU is a model that chooses a new kind of hidden unit by utilizing the architecture of
the LSTM unit [38,39]. GRU is the straightforward variation of LSTM that includes two
gates: an input gate into a single update gate and a forget gate. The update gate consisting
of the inputs from GRU has no extra memory cell to keep data which subsequently can
regulate the data inside the unit [40]. The GRU architecture is illustrated in Figure 3.
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GRU has exemplified its adequacy in an assortment of applications requiring consecu-
tive or temporal information [41]. The transition capacities in hidden layers of the GRU cell
are controlled according to Equations (7)–(10).

zt = σ(Wzxt + Vzht−1 + bz) (7)

rt = σ(Wrxt + Vrht−1 + br) (8)

ht = tanh(Wcxt + Vc(rt · ht−1)) (9)

ht = (1− zt)· ht−1 + zt · ht (10)

Here, a gate controller, z in Equation (7), controls both input and forget gates. The
forget gate is open and the input gate is closed while the z value is 0. However, the forget
gate is closed, and the input gate is open when z is 0. At each step, the previous (t− 1)
memory is saved, and the input of the time step is cleared. Moreover, the ht executes
the same function as in recurrent unit and in terms of ht where time t signifies the linear
exclamation between the current ht and previous ht−1 activation inside the GRU unit stated
in Equations (9) and (10).

3.1.3. Bidirectional LSTM Model

Due to its design, an LSTM network can execute only the forward passes on consecu-
tive information, which eventually implies the unidirectional model of data processing [42].
An instinctive way to mitigate this confinement is to utilize a clone copy of the LSTM
arrangement but in the opposite order proposed by Schuster and Paliwal [43]. Hence,
combining the LSTM forward and backward networks, a Bidirectional LSTM (BiLSTM)
is made, which can be utilized to show conditions bidirectionally. Figure 4 demonstrates
the structure of the BiLSTM network, which is an arrangement of handling sequence pro-
cessing that comprises two LSTMs networks: one taking the input in a forward layer and
the other in reverse order in a backward layer. The forward layer is accompanied by the
inputs coming from the input layer, and the backward layer generates the outcomes in the
output layer.
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The bidirectional RNN encompasses two different hidden layers with similar output
but in reverse orientation. Following the construction of BiLSTM, the output layer includes
the previous and future information. For BiLSTM, the input sequence

X = (X1, X2, · · · · · · , Xn) is designed in forward network such as
→
ht =

(→
h1,

→
h1, · · · · · · ,

→
hn

)
and backward network as

←
ht =

(←
h1 ,

←
h1, · · · · · · ,

←
hn

)
. The final output generated from the

sequence as the output of prediction vectors is Yt = [· · · yt−1, yt, yt+1 · · ·]. The final output

cell is formed by both
→
ht and

←
ht. Therefore, individual yt is calculated by combining both

directions denoted in Equation (11):

yt = δ

(→
ht,
←
ht

)
(11)

3.2. Performance Indices

Four performance measures such as MAE, MAPE, R2 and RMSE are applied to estimate
the performance of the proposed models. Here, C signifies the actual value, C̃ for estimated
value and C is the average of the actual values. For the best model, MAE values should be
equal to zero [44].

MAE =
1
M

M

∑
i=1

∣∣∣C− C̃
∣∣∣ (12)

RMSE is specified in Equation (13) [44] as

RMSE =

√√√√ 1
M

M

∑
i=1

(
C− C̃

)2
(13)

MAPE is specified in Equation (14) [44] as

MAPE =
1
M

M

∑
i=1

∣∣∣C− C̃
∣∣∣

|C| (14)

R2 is specified in Equation (15) [44] as

R2 =
∑M

i=1

(
C̃− C

)2

∑M
i=1

(
C− C̃

)2 (15)
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3.3. Data Description

We have used data obtained from public bins from a particular council located in
Wyndham city, Melbourne, Australia. These data were obtained from the data portal:
https://data.gov.au [45]. It contains the json file, and the data are stored according to the
json tags. The recorded data were collected from the council starting from July 2018 to
May 2021. Table 2 illustrates the specification of the dataset for waste generation. The
collected dataset contains the bin data generated from the sensors, and data from a total
of thirty-two bins are stored every day. However, the bins are placed in various public
places within the Wyndham city council area. Different attributes are used to identify
the suitable bin to be vacated using the filling-level detection. A detailed description of
each attribute is presented in Table 2. It can be observed that the first attribute defining
it is a collection point, the second and third attributes storing the geographical position
for a bin. An even number has been used for setting the criteria and tracking the status
(latest empty/fullness) of a bin used by four, nine and ten number attributes. The reason
attributes define the verbal status generated from the numeric values. The serial number is
the tracking number for a particular bin and description containing the string describing
the details of a particular bin. The position is an attribute that defines where the bin has
been placed, and finally the timestamp attribute which contains the date information. First,
the data is pre-processed for missing values before it is applied to deep-learning models.

Table 2. Detail description of the collected data set.

S. No. Attribute Attribute Information

1 Type Points
2 Coordinates0 Geographical position Latitude
3 Coordinates1 Geographical position Longitude
4 LatestFullness Numeric 0 to 10
5 Reason Fullness and Not_Ready
6 SerialNumber Numeric number
7 Description Details about the points
8 Position Centre
9 AgeThreshold Numeric 0 to 10
10 FullnessThreshold Numeric 6 or 8
11 Timestamp Date

3.4. Data Exploration

Understanding the data trends and behaviors is essential and valuable while dealing
with data analysis. Moreover, this observation evaluates the meaningful identification of
the fact produced by the data [46]. Figure 5 demonstrates the seasonal decomposition of
the bin status (empty/fullness) from the one-month waste generation data. It shows the
great similarity between the residual trend and the observed components. We can observe
interesting information extracted from the data, considering the trend and seasonality.
Based on the plot in Figure 5, the trend in the data seems to be high overall. Moreover, there
is apparent regularity within the information, causing the bin status to fluctuate by 0.5 over
the whole period. Furthermore, the residuals are obtaining periods of high variableness
throughout the time series, and the randomness in the data will be smooth through the
moving average (MA), which can aid the model.

https://data.gov.au
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4. Results and Discussion

This section presents the results on the deep-learning models that are trained-tested.
Finally, the model performances are evaluated through statistical indices. For sequential
forecasting, the 1D CNN, LSTM, GRU and BiLSTM methods are chosen. The waste
generation dataset is divided into training samples of 80% consisting of 292 days and a test
sample of 73 days. The performance of the deep learning models is calculated by executing
MAE and RMSE standard statistical error measurement indices. The total experiment and
the simulations are executed in Google-Colab [46] and encoded with Python deep learning
API Keras [47].

The dataset comprises the feature of the bin status (fullness threshold) and timestamp.
The unscaled data take longer for the convergence activities. The MinMaxScaler (scales
the data to a specific value range) estimator will fit the training data set in the case of
normalizing the training and test data sets, and the same estimator will be utilized to
transform both training and test data sets. The shape of the uniqueness of disseminating
data is preserved by MinMaxScaler. Furthermore, it also maintains valuable information
about outliers and scales the data to a limited range of values. Table 3 presents the
proposed models’ parameters with their assessments of 1D CNN, LSTM, GRU and BiLSTM
is represented in.

For all the four models, the optimizer is Adam, batch size is 70 and epochs are 20. It
is worth mentioning here that all the aforementioned parameters are modified through
trial and error. The next step is to calculate the train and test error calculation for the 1D
CNN, LSTM, GRU and BiLSTM models. The error values are illustrated in Table 4 while
considering performance measure indices MAE, MAPE, R2 and RMSE. The smallest value
of MAE and RMSE is considered the best model. Following the criteria, we found that
LSTM is the best compared to the others. The RMSE value for the LSTM model is the lowest.
Therefore, LSTM is more efficient at forecasting long-term dependencies in comparison to
1D CNN, GRU and BiLSTM.
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Table 3. Characteristics of the proposed deep learning models.

Layer Output Shape Parameters

Parameter Details

Total Parameter Trainable
Parameter

Non-Trainable
Parameter

1D CNN (None, 1, 200) 6200
6401 6401 0GlobalMaxPooling1D (None, 200) 0

Dense (None, 1) 201

LSTM (None, 100) 52,400
52,501 52,501 0Dropout (None, 100) 0

Dense (None, 1) 101

GRU (None, 100) 39,600
39,701 39,701 0Dropout (None, 100) 0

Dense (None, 1) 101

BiLSTM (None, 200) 104,800
105,001 105,001 0Dropout (None, 200) 0

Dense (None, 1) 201

Table 4. Comparison among deep-learning models in terms of different error measures.

Model
MAE MAPE RMSE R2

Train Test Train Test Train Test Train Test

1D CNN 0.667 0.677 3.170 3.678 1.128 1.132 0.274 0.269
LSTM 0.602 0.705 1.855 2.198 1.579 1.798 0.925 0.903
GRU 0.698 0.811 2.427 2.787 1.694 1.937 0.921 0.897

BiLSTM 0.638 0.747 7.951 8.911 1.543 1.774 0.925 0.901

Figure 6 displays the plots train loss and valid loss with various epochs applied to
the models to predict waste generation. With the increase of epochs, the loss grows higher
for both training and valid datasets. For 1D CNN, the trend of loss grows after 10 epochs
and also in 6 epochs, reaching 0.15 and 0.15, respectively. The trend of loss in the train loss
increases with the increase in the epochs for LSTM and BiLSTM reaching 0.01 and 0.10,
respectively at 20 epochs. However, for GRU, the train loss decreases while the epochs
increase reaching 0.16 at 20 epochs. The train loss and test loss almost maintain constancy
with the values 0.02 and 0.08 at epoch 4, which demonstrates that the GRU model has
achieved the convergence state. Therefore, the GRU has a better prediction performance
for waste generation.

Figure 7 displays the differences between the actual and predicted results. In a few
incidents, the predicted outcome diverges from the actual outcome, while executing the
simulation using models.

The correctness of the models is tabulated in Table 4. The RMSE and R2 of the LSTM
model are the lowest with the values 1.579 and 0.925, respectively. Therefore, LSTM is
more capable of forecasting waste generation trends than 1D CNN, GRU and BiLSTM
are, with a very low variance between others. The visual description of the predicted and
actual outcomes of the training dataset for four models is illustrated in Figure 7. From the
representation of the results and the advantages and disadvantages of the 1D CNN, LSTM,
GRU and BiLSTM models, the conclusion can be drawn that LSTM is suitable for the waste
data to predict waste generation. The process of managerial decision-making will be more
efficient with the forecasted results using the LSTM model.
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The proposed models in this paper can be considered reliable and acceptable for
waste estimation. Table 5 encapsulates the summary that compares the models in the
literature and those in this study [5,29–34]. Niu et al. [29] have considered two-year data
using the LSTM model and have obtained RMSE 940 and coefficient determination (R2) of
0.90. Chhay et al. [33] have contemplated eight socio-economic-factors in China from the
statistical yearbook 2000–2016 and the outcome attained in terms of MAE, MAPE, RMSE
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and R2 are 228.53, 0.0143, 450.84, and 0.931, respectively. Abbasi and El Hanandeh [34]
considered the ANFIS compared to ANN model for 18 years and achieved R2 (0.99–0.83),
MAE (0.001–335.03), RMSE (0.002–498.43), and MAPE (3.39 × 10−6–0.07). Lin et al. [5]
depict that the correlation coefficient of attention, one-dimension CNN, and LSTM are 78,
86.6 and 90, respectively, while considering the actual and prediction values. Based on the
values 3.17, 1.85, 2.42, 7.95 for 1D CNN, LSTM, GRU, and Bi-LSTM from MAPES, the best
forecasting model is LSTM compared to all other models. The prediction and the actual
results are very close with RSME values measured for 1D CNN, LSTM, GRU and Bi-LSTM
models at 1.12, 1.57, 1.69 and 1.54, respectively. These results show that LSTM performs
better than other models in terms of predicting empty/fullness status of the bins within
a year.

Table 5. A comparison between previous work and the models proposed in this study.

Purpose Models Results References

Waste generation
ANFIS MAE: 0.001, MAPE: 3.39 × 10−6

RMSE: 0.002, R2: 0.99 Abbasi and El Hanandeh [34]
ANN MAE: 335.03, MAPE: 0.07

RMSE: 498.43, R2: 0.83

Estimating waste
amount LSTM MAPE: 63.66, RMSE: 659.58,

R2: 0.96 Niu et al. [29]

Predicting waste amount
LSTM R2: 0.90

Lin et al. [5]Attention R2: 0.78
CNN R2: 0.86

Predicting waste
generation ANN MAE: 228.53, MAPE: 0.0143

RMSE: 450.84, R2: 0.931 Chhay et al. [33]

Estimating waste
generation

1D CNN MAE: 0.667, MAPE: 3.170,

The proposed models

RMSE: 1.128, R2: 0.274
LSTM MAE: 0.602, MAPE: 1.855,

RMSE: 1.579, R2: 0.925
GRU MAE: 0.698, MAPE: 2.427,

RMSE: 1.694, R2: 0.921
BiLSTM MAE: 0.638, MAPE: 7.951,

RMSE: 1.543, R2: 0.925

Waste generation is predicted by different seasonal periods such as daily, weekly,
monthly or yearly, and a few researchers have used the gross or total amount of waste
data produced by the bins as a whole for a particular region [5,30,33,34]. However, this
study has considered individual garbage bins located in public places and predictions are
being made from the bin data generated from the sensors. As a result, the proposed models
show more efficient forecasting than other existing models. Furthermore, compared to
other models, LSTM performs better in predicting the empty/fullness status of the bins.
This outcome confirms the best use of resources, dynamic deployment bins with a better
vacant schedule. This model demonstrates the usefulness and reproducibility in different
municipals. Moreover, this deep learning model can be applied to waste analysis and
administration decision-making problem in various settings.

5. Conclusions

In this study, deep learning methods can be observed to have a noteworthy impact on
technological advances, particularly in creating diverse time-series-based forecast models.
This study aims to examine the predictive models while applying the data coming from
endpoints such as sensors, rather than using the human-made historical dataset. The pre-
dictive analysis for waste generation revealed different behavior originating from different
sources located within a council.
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Waste generation forecasting is the primary stage for waste management and waste
disposal processes. The study has applied four types of deep-learning algorithms such as 1D
CNN, LSTM, GRU and BiLSTM for predicting waste generation. To test the effectiveness of
the four models, performance measure metrics are calculated. The result reveals that LSTM
outperformed the other models with an MAE of 0.602, MAPE 1.855, R2 0.925 and RMSE
1.579. In addition, 1D CNN, LSTM, GRU and BiLSTM have shown robustness and much-
enhanced forecasting when assessed with actual numbers representing less estimate errors.
The changes in the waste generation period have various significant values that could
interrupt the waste collection, transportation and disposal process. Therefore, detailed
knowledge of these changes revealed from the deep-learning method could immensely
help waste management authorities during emergencies or for estimating a proper vacant
schedule to ensure a better sustainable environment for the citizens and local council. The
deep learning models are used for waste generation analysis using the dataset produced
from the sensors located in the bin. For practical implications, these deep learning models
can be modified and adopted by waste management authorities to acquire a reliable waste
analytic system while relying on the data produced from the bins.

In future work, we will be exploring different factors such as organizational, so-
cioeconomic factors and public utility investment that might have an impact on waste
generation. Another study can also be done to identify the influential factors through the
in-depth study intervention for the development of a more optimized and cost-efficient
waste management system.
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